	Course Code
	Course Title
	L
	P
	U

	MA523P
	Numerical Analysis Lab
	0
	3
	2

 Scope & Objective of the course:

This course is strongly associated to the course Numerical Analysis (MA523T). This course enables one to solve various computations problems on numerical analysis by using a programming language or computation software.

Course outcome: On completion of this course students will able to:
1. Understand numerical techniques to find the roots of non-linear equations and solution of system of linear equations.
2. Understand the difference operators and the use of interpolation.
3. Understand numerical differentiation and integration and numerical solutions of ordinary and partial differential equations.
4. Understand basic concepts that will be required to start a research
Mapping of Course Outcome(s):
	PO/

CO
	Program Outcomes

	
	PO1
	PO2
	PO3
	PO4
	PO5
	PO6
	PO7

	Course Outcomes
	CO1
	
	S
	S
	S
	
	M
	L

	
	CO2
	
	S
	S
	S
	
	M
	L

	
	CO3
	
	S
	S
	S
	
	M
	L

	
	CO4
	
	S
	S
	S
	
	
	L

Course Contents:
Different type of root finding methods for nonlinear and transcendental equations, various interpolation technique, numerical differentiation and integration rules, numerical solution of ordinary differential equations.
References:

R1: Numerical Analysis, Burden and Faires, Thomson Learning, 7th ed., 2001.

	Topic
	Theory
	Algorithms

	MATLAB
	Some basic operations on MATLAB
	

	Bisection Methods
	This method is based on theorem, that if a function f(x) is continuous between a and b, and f(a) * f(b) < 0 i.e. f(a) and f(b) are of opposite signs, then there is exits of at least one root between a and b. Its approximate value will be given by, x0=(a+b)/2. If f(x0) = 0, we conclude that x0 is a root of equation f(x) = 0. Otherwise the root lies either between x0 and b or between a and x0, depending on whether f(x0) is –ve or +ve. (Considering f(a) is –ve and f(b) is +ve).

	Algorithm for Bisection Method:

1. Define f(x) =

2. Enter the desired accuracy, e

3. do

{

Read a,b

} while (f(a) * f(b) > 0)

4. k = 0

5. do

{

x0 = (a+b)/2

if (f(a) * f(b) < 0) then

b = x0

else

a = x0

endif

k = k + 1

} while (|b-a|) > e)

6. Print the value of root, x0 and no. of iterations performed, k.

Stop.

	Newton Raphson method
	In this method the real root of the equation f(x) = 0 can be computed rapidly, when the derivative of f(x) can be easily found and is a simple expression. When an approximate value of a real root of an equation is known, a closer approximation to the root can be obtained by an iterative process, as explained below:

Let x0 be an approximate value of a root of the equation f(x) = 0.

Let x1 be the exact root closer to x0, so that x1 = x0 + h, where h is small.

Since x1 is the exact root of f(x) = 0, we have f(x1) = 0, i.e., f(x0 + h) = 0

i.e.,
[image: image1.wmf]0

...

)

(

!

2

)

(

f

1!

h

)

f(x

0

"

2

0

'

0

=

+

+

+

x

f

h

x

, by Taylor’s theorem

Since h is small, h2 and higher powers of h may be omitted.

Hence
[image: image2.wmf],

0

)

(

)

(

0

'

0

=

+

x

hf

x

f

 approximately

[image: image3.wmf]\

[image: image4.wmf])

(

)

(

0

'

0

x

f

x

f

h

-

=

 approximately

[image: image5.wmf]\

[image: image6.wmf])

(

)

(

0

'

0

0

0

1

x

f

x

f

x

h

x

x

-

=

+

=

 approximately.

The value of x1 thus obtained will be a closer approximation to the actual root of f(x) = 0 than x0.

Taking x1 as an approximate value of the root, a still better approximation x2 can be obtained by using the formula

[image: image7.wmf])

(

)

(

1

'

1

1

2

x

f

x

f

x

x

-

=

The iterative process is continued until we get the required accuracy, i.e., until |xn + 1 – xn| is less than a prescribed small value.

The iterative formula

[image: image8.wmf])

(

)

(

'

1

n

n

n

n

x

f

x

f

x

x

-

=

+

is called the Newton-Raphson formula.
	Algorithm for Newton-Raphson Method:

1. Define f(x) = , and derivative of f(x) i.e. Df(x) =

2. Enter desired accuracy, e and initial guess, x0

3. k = 0

4. do

{

x(k+1) = x(k)-[f(x(k))/Df(x(k))]

k=k+1

}while (|x(k+1)-x(k)|>=e)

5. Print root of the equation is, x(k+1), and no. of iterations, k

Stop.

	Lagrange Interpolation
	Interpolation is the process of estimating an intermediate value between two terms in a sequence of terms. For example, consider the following table of values x and y.

x

0

0.5

1

1.5

2

y

1

0.9

1.1

3.2

4.2

Suppose we require the value of y corresponding to x =0.65. If we know the exact mathematical relationship between x and y, then it is easy to evaluate y at x = 0.65. In the absenseof such a relationship, we must devise some method of estimating the value of y for any value of x. If the value of x is within the range of given values of x, then the process of estimating the corresponding value of y is called interpolation.

	Algorithm for Lagrange’s Interpolation Method:

1. Read n, X

2. Read xi, yi, where i = 1,2, 3, ….., n

3. sum = 0

4. for i = 1 (1) n, do till (11)

5. prod = 1

6. for j = 1 (1) n, do till (9)

7. if j ≠ i,

8. prod = prod * (X-x[j])/(x[i]-x[j])

9. Else, Next j

10. sum = sum + (prod *y[i])

11. Next i

12. Print X, sum

13. stop

	Newton Forward Interpolation
	If y0, y1, y2, ……, yn are the values of y = f(x) corresponding to equidistant values of x =x0, x1, x2, ……, xn, where xi – xi-1 = h, for i = 1, 2, 3, …..,n, then y = y0 + u/!1∆y0 + u(u-1) /2!∆​​​​​​​​​​​​2​​​​​​ y0 + …………+ u(u-1) ……(u- n-1) / n! ∆​​​​​​​​​​​​n y0, where u = (x – x0)/h.

	1. Newton Forward Interpolation

2. Read x0, h, n [= no. of data pairs – 1]

3. Read yi; i = 0, 1, 2,…., n

4. Read l (= no. of required interpolated values of y)

5. Read Xj; I =0, 1, 2, ….,(l-1) [Values of x for which y are required]

6. For j = 0(1)n, do till (8)

7. f0,j = yj

8. Next, j

9. For i = 1(1)n, do till (13)

10. For j = 0(1)(n-i), do till (12)

11. fi ,j = fi-1,j+1 – fi-1,j

12. Next j

13. Next i

14. for k = 0(1)(l-1), do till (22)

15. u = (xk – x0)/h

16. Yk = y0

17. p=1

18. For i = 1(1) n, do till (21)

19. p = p(u-i +1)/i

20. Yk = Yk + p.fi,0

21. Next i

22. Write Xk, Yk

23. End

	Trapezoidal Rule, Simson’s 1/3 Rule
	Putting n = 1, in the general formula I= n.h[y0 + n(2n-3)/12∆2 y0+ n(n-2) 2/24 ∆3 y0+----] all differences higher than the first degree will become zero and we obtain,

 x1

 ∫ y.dx = h.[y0 + (1/2) ∆y0] = h.[y0+(1/2).(y1-y0)] = (h/2).[y0 + y1]

 x0

This is the formula for first step from x0 to x1 of one strip of width, h)

For the next interval [x1,x2], we obtain similarly,

x2

∫ y.dx = (h/2).[y1 + y2]

x1

(this is the formula for 2nd step from x1 to x2 of one strip of width, h) and so on.

For last interval [xn-1,xn] we have ,

xn

∫ y.dx = (h/2).[y n-1 + yn]

This is the formula for nth step from xn-1 to xn of one strip of width, h)

Combining all these expressions, we obtain the Trapezoidal rule.

This rule is obtained by putting n = 2, in the general eqn.(3.1) i.e. by replacing the curve f(x) by 2 arcs of second degree polynomial or parabolas, or quadratic and all differences higher than 2 will become zero.

x2

∫ y.dx = 2h.[y0 + ∆y0 + (1/6) ∆2 y0] (where ∆y0 = y1 –y0 and ∆2y0 = y2 -2y1 =y0)

x0

x2

Hence ∫ y.dx = ((h/3).[y0 + 4y1 + y2]

x0

(This is the formula for 1st step from x0 to x2 of (2.h) step width, having 2 strips of each of width h)

Similarly for 2nd step consider points (x2,y2), (x3,y3) and (x4,y4).

x4

∫y.dx = (h/3).[y2 + 4y3 +y4]

x2

(This is the formula for 2nd step from x2 to x4 of (2.h) step width, having 2 strips of each of width h)

So on. For the last step,

xn

∫ y.dx = (h/3).[yn-2 + 4yn-1 + yn]

xn-2

This is the formula for last step from xn-2 to xn of (2.h) step width, having 2 strips of each of width h)

Summing up, we obtain the Simpson’s 1/3rd Rule.

	1. Define f(x) =

2. Enter the values of lower and upper limit of x i.e. x0, xn and also enter number of intervals N.

3. Ns = 1

4. h = {(xn-x0)/N }

5. sum = 0

6. do

{

sum = sum + (h/2).[f(x0) + f(x0 + h)]

x0 = x0 +h

}while(x0<xn)

7. Print sum

8. Stop

1. Define f(x) =

2. Enter the values of lower and upper limit of x, i.e. x0 and also enter number of intervals, N(N should be even number)

3. h = ((xn – x0)/N)

4. sum = 0

5. do

{

sum = sum + (h/3).[f(x0) +4f(x0 +h) +f(x0 + 2h)]

x0 = x0 + 2h

} while (x0<xn)

6. print sum

7. stop

	Taylor Series, Euler’s method,

	Let dy/dx = y’ = f(x,y), with y = y0 at x = x0. Using the formula derived from the Taylor’s series as follows,

y(x+h) = y(x) + hy’(x) + (h2/2!).f”(x)+--------------------

If the step length h is taken sufficiently small, the terms containing h2, h3 etc. in Taylor’s Series are still smaller and hence can be neglected to give approximate solution.
(Here, y’(x) is replaced by y’=f(x,y))

Y(x + h) = y(x) + h.f(x, y)

In the first step,

y(x0 +h) = y(x0) + h.f(x0,y0), where x1= x0+h and y(x0) = y0

y(x0 + h) = y(x0) + h.f(x0,y0) can be written as

y(x1) = y(x0) + h.f(x0,y0)

similarly,

y2 = y2 + h.f(x1,y1)

yn+1 = yn + h.f(xn + yn)

Thus the successesive values of y1,y2,y3,------at x1,x2,x3,------- are obtained from above equations.

	1. Define f(x,y) =

2. Enter the starting values x0, y0.

3. Enter the value of at which y is required, xn

4. Enter the step size, h.

5. do

{

print x0, y0

y1 = y0 + h.f(x0,y0)

x0 = x0 + h

y0 = y1

}while(x0<=xn)

6. stop

	Runge-Kutta method
	Here, a weighted average of the four slopes are taken and given by,

 S = (1/6).[S1+ 2.S2 + 2.S3 + S4]

Hence, y1 = y0 + (h/6).[S1+ 2.S2 + 2.S3 + S4]

For simplicity,

y1 = y0 + k,

Where S1 = k1, S2 = k2, S3 =k3, S4 = k4.

K = (k1 + 2.k2 +2.k3 + k4)/6

k1= h.f(x0, y0)

k2 = h.f(x0+h/2,y0+k1/2)

k3 = h.f(x0 + h/2, y0 + k2/2)

k4 = h.f(x0 + h, y0 + k3)

	Algorithm for Fourth Order Runge-Kutta method:

1. Define f(x,y) =

2. Enter the value of xo,y0, xn, h

3. do {

k1= h.f(x0, y0)

k2 = h.f(x0+h/2,y0+k1/2)

k3 = h.f(x0 + h/2, y0 + k2/2)

k4 = h.f(x0 + h, y0 + k3)

k = (k1 + 2.k2 + 2.k3 + k4)/6

y1 = y0 + k

print x0, y0

y0 = y1

x0 =x0 +h

}while(x0<xn)

4. stop

Evaluation Scheme:

	Component
	Duration
	Weightage (%)
	Remarks

	Internal I
	3 hrs.
	25
	Closed Book

	Mid term
	2 hrs.
	20
	Closed Book

	Internal II
	3 hrs.
	25
	Closed Book

	Comprehensive Exam
	3 hrs.
	30
	Closed Book

1. Attendance Policy: A Student must normally maintain a minimum of 75% attendance in the course without which he/she shall be disqualified from appearing in the respective examination.
2. Make-up Policy: A student, who misses any component of evaluation for genuine reasons, must immediately approach the instructor with a request for make-up examination stating reasons. The decision of the instructor in all matters of make-up shall be final.

3. Chamber Consultation Hours: During the Chamber Consultation Hours, the students can consult the respective faculty in his/her chamber without prior appointment.
7 | Page

_-1352775668.unknown

_-1352944880.unknown

_-1352945200.unknown

_-1352776308.unknown

_-1352944240.unknown

_-1352774708.unknown

_-1352775028.unknown

_-1352774388.unknown

